Research Topics

Our primary mission is to identify and understand the molecular modules that regulate plant cell polarity and morphogenesis, focusing on those operating at the intersection of the secretory pathway, plasma membrane lipids, and the actin cytoskeleton. We divide our attention between two main processes that give plant cells their shape: oriented cell division and differential cell growth, and we focus on intracellular molecular mechanisms driving cellular morphogenesis, such as exocytosis.

Top ↑

The Exocyst Complex

The orchestration of cellular processes in eukaryotes hinges on transporting extracellular matrix, membrane lipids, and proteins to the cell surface, predominantly achieved through exocytotic vesicles. The culmination of the secretory pathway is exocytosis, a finely tuned process involving the tethering, docking, and fusion of secretory vesicles with the plasma membrane, ultimately culminating in cargo release.

At the core of our investigations lies the exocyst, a conserved octameric protein complex that plays a central role in tethering secretory vesicles to the plasma membrane, thus serving as a pivotal exocytosis regulator. Our research efforts are centred around dissecting the functional intricacies of the exocyst across a diverse spectrum of plant species, ranging from angiosperms Arabidopsis thaliana and Nicotiana tabacum to bryophytes Physcomitrium patens and Marchantia polymorpha, as well as the streptophyte alga Klebsormidium nitens. An important aspect of our research is exploring the role of vesicular traffic, specifically the exocyst, in plant reaction to abiotic stresses and in plant-microbe interactions.

Top ↑

Anionic Phospholipids in Cell Polarity

Concurrently, our research extends into deciphering the roles of negatively charged phospholipids in establishing and maintaining plant cell polarity. Although quantitatively minor, these anionic lipids are pivotal in governing membrane characteristics, charge, curvature, signalling, and protein recruitment. The collaborative regulatory role of these phospholipids in orchestrating vesicular traffic at the plasma membrane is of particular interest. In this context, we also examine the lipid kinases and phospholipases that catalyze the production of anionic lipid phosphatidic acid at the plasma membrane.


Top ↑

Projects

current

past (2009-2022)